ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.19849
  4. Cited By
Predicting mutational effects on protein-protein binding via a
  side-chain diffusion probabilistic model

Predicting mutational effects on protein-protein binding via a side-chain diffusion probabilistic model

30 October 2023
Shiwei Liu
Tian Zhu
Milong Ren
Chungong Yu
Dongbo Bu
Haicang Zhang
    DiffM
ArXivPDFHTML

Papers citing "Predicting mutational effects on protein-protein binding via a side-chain diffusion probabilistic model"

9 / 9 papers shown
Title
Boltzmann-Aligned Inverse Folding Model as a Predictor of Mutational
  Effects on Protein-Protein Interactions
Boltzmann-Aligned Inverse Folding Model as a Predictor of Mutational Effects on Protein-Protein Interactions
Xiaoran Jiao
Weian Mao
Wengong Jin
Peiyuan Yang
Hao Chen
Chunhua Shen
28
0
0
12 Oct 2024
Active learning for energy-based antibody optimization and enhanced
  screening
Active learning for energy-based antibody optimization and enhanced screening
Kairi Furui
Masahito Ohue
23
0
0
17 Sep 2024
Multi-level Interaction Modeling for Protein Mutational Effect
  Prediction
Multi-level Interaction Modeling for Protein Mutational Effect Prediction
Yuanle Mo
Xin Hong
Bowen Gao
Yinjun Jia
Yanyan Lan
AI4CE
24
2
0
28 May 2024
Learning to Predict Mutation Effects of Protein-Protein Interactions by
  Microenvironment-aware Hierarchical Prompt Learning
Learning to Predict Mutation Effects of Protein-Protein Interactions by Microenvironment-aware Hierarchical Prompt Learning
Lirong Wu
Yijun Tian
Haitao Lin
Yufei Huang
Siyuan Li
Nitesh V. Chawla
Stan Z. Li
33
4
0
16 May 2024
Revealing data leakage in protein interaction benchmarks
Revealing data leakage in protein interaction benchmarks
Anton Bushuiev
Roman Bushuiev
Jiri Sedlar
Tomáš Pluskal
Jiří Damborský
Stanislav Mazurenko
Josef Sivic
23
3
0
16 Apr 2024
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso
Hannes Stärk
Bowen Jing
Regina Barzilay
Tommi Jaakkola
DiffM
130
408
0
04 Oct 2022
Tranception: protein fitness prediction with autoregressive transformers
  and inference-time retrieval
Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval
Pascal Notin
M. Dias
J. Frazer
Javier Marchena-Hurtado
Aidan N. Gomez
D. Marks
Y. Gal
53
176
0
27 May 2022
Riemannian Score-Based Generative Modelling
Riemannian Score-Based Generative Modelling
Valentin De Bortoli
Emile Mathieu
M. Hutchinson
James Thornton
Yee Whye Teh
Arnaud Doucet
DiffM
217
164
0
06 Feb 2022
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
202
394
0
10 Feb 2021
1