ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.00626
  4. Cited By
nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping

nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping

1 November 2023
A. Millane
Helen Oleynikova
Emilie Wirbel
Remo Steiner
Vikram Ramasamy
David Tingdahl
Roland Siegwart
ArXivPDFHTML

Papers citing "nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping"

4 / 4 papers shown
Title
Certifiably-Correct Mapping for Safe Navigation Despite Odometry Drift
Certifiably-Correct Mapping for Safe Navigation Despite Odometry Drift
Devansh R. Agrawal
Taekyung Kim
Rajiv G. Govindjee
Trushant Adeshara
Jiangbo Yu
Anurekha Ravikumar
Dimitra Panagou
17
0
0
25 Apr 2025
Collision-Affording Point Trees: SIMD-Amenable Nearest Neighbors for
  Fast Collision Checking
Collision-Affording Point Trees: SIMD-Amenable Nearest Neighbors for Fast Collision Checking
Clayton W. Ramsey
Zachary K. Kingston
Wil Thomason
Lydia E. Kavraki
24
5
0
04 Jun 2024
Vision-Only Robot Navigation in a Neural Radiance World
Vision-Only Robot Navigation in a Neural Radiance World
M. Adamkiewicz
Timothy Chen
Adam Caccavale
Rachel Gardner
Preston Culbertson
Jeannette Bohg
Mac Schwager
151
227
0
01 Oct 2021
FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by
  Tightly-Coupled Iterated Kalman Filter
FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter
W. Xu
Fu Zhang
66
582
0
16 Oct 2020
1