ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.00862
  4. Cited By
Role of Structural and Conformational Diversity for Machine Learning
  Potentials

Role of Structural and Conformational Diversity for Machine Learning Potentials

30 October 2023
Nikhil Shenoy
Prudencio Tossou
Emmanuel Noutahi
Hadrien Mary
Dominique Beaini
Jiarui Ding
    AI4CE
ArXivPDFHTML

Papers citing "Role of Structural and Conformational Diversity for Machine Learning Potentials"

3 / 3 papers shown
Title
SPICE, A Dataset of Drug-like Molecules and Peptides for Training
  Machine Learning Potentials
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni De Fabritiis
T. Markland
34
105
0
21 Sep 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
  Graphs
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
83
216
0
23 Jun 2022
Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular
  Graphs
Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs
Zhao Xu
Youzhi Luo
Xuan Zhang
Xinyi Xu
Yaochen Xie
Meng Liu
Kaleb Dickerson
Cheng Deng
Maho Nakata
Shuiwang Ji
43
39
0
30 Sep 2021
1