ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.02328
  4. Cited By
An Operator Learning Framework for Spatiotemporal Super-resolution of
  Scientific Simulations

An Operator Learning Framework for Spatiotemporal Super-resolution of Scientific Simulations

4 November 2023
Valentin Duruisseaux
Amit Chakraborty
    AI4CE
ArXivPDFHTML

Papers citing "An Operator Learning Framework for Spatiotemporal Super-resolution of Scientific Simulations"

10 / 10 papers shown
Title
Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs
Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs
Jean Kossaifi
Nikola B. Kovachki
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
42
32
0
29 Sep 2023
Nonlinear Reconstruction for Operator Learning of PDEs with
  Discontinuities
Nonlinear Reconstruction for Operator Learning of PDEs with Discontinuities
S. Lanthaler
Roberto Molinaro
Patrik Hadorn
Siddhartha Mishra
37
24
0
03 Oct 2022
Fourier Neural Operator with Learned Deformations for PDEs on General
  Geometries
Fourier Neural Operator with Learned Deformations for PDEs on General Geometries
Zong-Yi Li
Daniel Zhengyu Huang
Burigede Liu
Anima Anandkumar
AI4CE
108
249
0
11 Jul 2022
PhySRNet: Physics informed super-resolution network for application in
  computational solid mechanics
PhySRNet: Physics informed super-resolution network for application in computational solid mechanics
Rajat Arora
AI4CE
18
10
0
30 Jun 2022
Arbitrary-Depth Universal Approximation Theorems for Operator Neural
  Networks
Arbitrary-Depth Universal Approximation Theorems for Operator Neural Networks
Annan Yu
Chloe Becquey
Diana Halikias
Matthew Esmaili Mallory
Alex Townsend
57
8
0
23 Sep 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
101
272
0
20 Apr 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,281
0
18 Oct 2020
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time
  Super-Resolution Framework
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
182
140
0
01 May 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
756
0
13 Mar 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain
  Decomposition
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
508
0
11 Mar 2020
1