Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.03094
Cited By
Equivariance Is Not All You Need: Characterizing the Utility of Equivariant Graph Neural Networks for Particle Physics Tasks
6 November 2023
S. Thais
D. Murnane
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Equivariance Is Not All You Need: Characterizing the Utility of Equivariant Graph Neural Networks for Particle Physics Tasks"
7 / 7 papers shown
Title
Optimal Equivariant Architectures from the Symmetries of Matrix-Element Likelihoods
Daniel Maître
Vishal S. Ngairangbam
M. Spannowsky
16
4
0
24 Oct 2024
On the design space between molecular mechanics and machine learning force fields
Yuanqing Wang
Kenichiro Takaba
Michael S. Chen
Marcus Wieder
Yuzhi Xu
...
Kyunghyun Cho
Joe G. Greener
Peter K. Eastman
Stefano Martiniani
M. Tuckerman
AI4CE
32
4
0
03 Sep 2024
Locality-Sensitive Hashing-Based Efficient Point Transformer with Applications in High-Energy Physics
Siqi Miao
Zhiyuan Lu
Mia Liu
Javier Duarte
Pan Li
31
4
0
19 Feb 2024
PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics
A. Bogatskiy
Timothy Hoffman
David W. Miller
Jan T. Offermann
16
30
0
01 Nov 2022
Approximately Equivariant Networks for Imperfectly Symmetric Dynamics
Rui Wang
Robin G. Walters
Rose Yu
25
73
0
28 Jan 2022
Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction
Cenk Tüysüz
C. Rieger
Kristiane Novotny
B. Demirköz
D. Dobos
K. Potamianos
S. Vallecorsa
J. Vlimant
Richard Forster
99
52
0
26 Sep 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
1