Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.03415
Cited By
PowerFlowNet: Power Flow Approximation Using Message Passing Graph Neural Networks
6 November 2023
Nan Lin
Stavros Orfanoudakis
Nathan Ordonez Cardenas
Juan S. Giraldo
Pedro P. Vergara
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PowerFlowNet: Power Flow Approximation Using Message Passing Graph Neural Networks"
4 / 4 papers shown
Title
SenseFlow: A Physics-Informed and Self-Ensembling Iterative Framework for Power Flow Estimation
Zhen Zhao
Wenqi Huang
Zicheng Wang
Jiaxuan Hou
Peng Li
Lei Bai
30
0
0
18 May 2025
Deep Statistical Solver for Distribution System State Estimation
Benjamin Habib
Elvin Isufi
Ward van Breda
A. Jongepier
J. Cremer
31
18
0
04 Jan 2023
Physics-Informed Graphical Neural Network for Parameter & State Estimations in Power Systems
Laurent Pagnier
Michael Chertkov
44
49
0
12 Feb 2021
Physics-Guided Deep Neural Networks for Power Flow Analysis
Xinyue Hu
Haoji Hu
Saurabh Verma
Zhi-Li Zhang
128
124
0
31 Jan 2020
1