Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.03687
Cited By
Dissecting the Runtime Performance of the Training, Fine-tuning, and Inference of Large Language Models
7 November 2023
Longteng Zhang
Xiang Liu
Zeyu Li
Xinglin Pan
Peijie Dong
Ruibo Fan
Rui Guo
Xin Wang
Qiong Luo
S. Shi
Xiaowen Chu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dissecting the Runtime Performance of the Training, Fine-tuning, and Inference of Large Language Models"
5 / 5 papers shown
Title
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
301
11,730
0
04 Mar 2022
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
278
3,784
0
18 Apr 2021
ZeRO-Offload: Democratizing Billion-Scale Model Training
Jie Ren
Samyam Rajbhandari
Reza Yazdani Aminabadi
Olatunji Ruwase
Shuangyang Yang
Minjia Zhang
Dong Li
Yuxiong He
MoE
160
399
0
18 Jan 2021
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
223
4,424
0
23 Jan 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
243
1,791
0
17 Sep 2019
1