ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.06572
  4. Cited By
Swin UNETR++: Advancing Transformer-Based Dense Dose Prediction Towards
  Fully Automated Radiation Oncology Treatments

Swin UNETR++: Advancing Transformer-Based Dense Dose Prediction Towards Fully Automated Radiation Oncology Treatments

11 November 2023
Kuancheng Wang
Hai Siong Tan
R. Mcbeth
ArXivPDFHTML

Papers citing "Swin UNETR++: Advancing Transformer-Based Dense Dose Prediction Towards Fully Automated Radiation Oncology Treatments"

2 / 2 papers shown
Title
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
255
36,371
0
25 Aug 2016
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
294
75,834
0
18 May 2015
1