Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.07073
Cited By
Exposition on over-squashing problem on GNNs: Current Methods, Benchmarks and Challenges
13 November 2023
Dai Shi
Andi Han
Lequan Lin
Yi Guo
Junbin Gao
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exposition on over-squashing problem on GNNs: Current Methods, Benchmarks and Challenges"
9 / 9 papers shown
Title
When Graph Neural Networks Meet Dynamic Mode Decomposition
Dai Shi
Lequan Lin
Andi Han
Zhiyong Wang
Yi Guo
Junbin Gao
AI4CE
11
0
0
08 Oct 2024
Mitigating Over-Smoothing and Over-Squashing using Augmentations of Forman-Ricci Curvature
Lukas Fesser
Melanie Weber
56
8
0
17 Sep 2023
Frameless Graph Knowledge Distillation
Dai Shi
Zhiqi Shao
Yi Guo
Junbin Gao
10
4
0
13 Jul 2023
Generalized energy and gradient flow via graph framelets
Andi Han
Dai Shi
Zhiqi Shao
Junbin Gao
61
12
0
08 Oct 2022
Expander Graph Propagation
Andreea Deac
Marc Lackenby
Petar Velivcković
93
41
0
06 Oct 2022
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
159
463
0
31 Dec 2020
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
159
170
0
09 Mar 2020
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
173
907
0
02 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
217
1,726
0
09 Jun 2018
1