ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.10002
  4. Cited By
Straggler-resilient Federated Learning: Tackling Computation
  Heterogeneity with Layer-wise Partial Model Training in Mobile Edge Network

Straggler-resilient Federated Learning: Tackling Computation Heterogeneity with Layer-wise Partial Model Training in Mobile Edge Network

16 November 2023
Student Member Ieee Hongda Wu
F. I. C. V. Ping Wang
Aswartha Narayana
    FedML
ArXivPDFHTML

Papers citing "Straggler-resilient Federated Learning: Tackling Computation Heterogeneity with Layer-wise Partial Model Training in Mobile Edge Network"

6 / 6 papers shown
Title
Joint Superposition Coding and Training for Federated Learning over
  Multi-Width Neural Networks
Joint Superposition Coding and Training for Federated Learning over Multi-Width Neural Networks
Hankyul Baek
Won Joon Yun
Yunseok Kwak
Soyi Jung
Mingyue Ji
M. Bennis
Jihong Park
Joongheon Kim
FedML
62
20
0
05 Dec 2021
Federated Dropout -- A Simple Approach for Enabling Federated Learning
  on Resource Constrained Devices
Federated Dropout -- A Simple Approach for Enabling Federated Learning on Resource Constrained Devices
Dingzhu Wen
Ki-Jun Jeon
Kaibin Huang
FedML
68
90
0
30 Sep 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets
  with Ordered Dropout
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
176
267
0
26 Feb 2021
Convergence of Update Aware Device Scheduling for Federated Learning at
  the Wireless Edge
Convergence of Update Aware Device Scheduling for Federated Learning at the Wireless Edge
M. Amiri
Deniz Gunduz
Sanjeev R. Kulkarni
H. Vincent Poor
71
169
0
28 Jan 2020
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
172
639
0
19 Sep 2019
Adaptive Federated Learning in Resource Constrained Edge Computing
  Systems
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
144
1,685
0
14 Apr 2018
1