ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.11058
  4. Cited By
Tactics2D: A Highly Modular and Extensible Simulator for Driving
  Decision-making

Tactics2D: A Highly Modular and Extensible Simulator for Driving Decision-making

18 November 2023
Yueyuan Li
Songan Zhang
Mingyang Jiang
Xingyuan Chen
Yeqiang Qian
Chunxiang Wang
Ming Yang
ArXivPDFHTML

Papers citing "Tactics2D: A Highly Modular and Extensible Simulator for Driving Decision-making"

3 / 3 papers shown
Title
HOPE: A Reinforcement Learning-based Hybrid Policy Path Planner for Diverse Parking Scenarios
HOPE: A Reinforcement Learning-based Hybrid Policy Path Planner for Diverse Parking Scenarios
Mingyang Jiang
Yueyuan Li
Songan Zhang
Siyuan Chen
Chunxiang Wang
Ming Yang
48
4
0
31 May 2024
Large Scale Interactive Motion Forecasting for Autonomous Driving : The
  Waymo Open Motion Dataset
Large Scale Interactive Motion Forecasting for Autonomous Driving : The Waymo Open Motion Dataset
Scott Ettinger
Shuyang Cheng
Benjamin Caine
Chenxi Liu
Hang Zhao
...
Jiquan Ngiam
Vijay Vasudevan
Alexander McCauley
Jonathon Shlens
Drago Anguelov
149
532
0
20 Apr 2021
SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for
  Autonomous Driving
SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving
Ming Zhou
Jun Luo
Julian Villela
Yaodong Yang
David Rusu
...
H. Ammar
Hongbo Zhang
Wulong Liu
Jianye Hao
Jun Wang
139
193
0
19 Oct 2020
1