Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.11262
Cited By
Uncertainty quantification for noisy inputs-outputs in physics-informed neural networks and neural operators
19 November 2023
Zongren Zou
Xuhui Meng
George Karniadakis
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Uncertainty quantification for noisy inputs-outputs in physics-informed neural networks and neural operators"
20 / 20 papers shown
Title
Improved Uncertainty Quantification in Physics-Informed Neural Networks Using Error Bounds and Solution Bundles
P. Flores
Olga Graf
P. Protopapas
K. Pichara
PINN
16
0
0
09 May 2025
Position: Epistemic Artificial Intelligence is Essential for Machine Learning Models to Know When They Do Not Know
Shireen Kudukkil Manchingal
Fabio Cuzzolin
42
0
0
08 May 2025
Learning Dual-Arm Coordination for Grasping Large Flat Objects
Yongliang Wang
H. Kasaei
32
0
0
04 Apr 2025
Uncertainty propagation in feed-forward neural network models
Jeremy Diamzon
Daniele Venturi
57
0
0
27 Mar 2025
Learning and discovering multiple solutions using physics-informed neural networks with random initialization and deep ensemble
Zongren Zou
Zhicheng Wang
George Karniadakis
PINN
AI4CE
65
2
0
08 Mar 2025
Physics-informed deep learning for infectious disease forecasting
Y. Qian
Éric Marty
Avranil Basu
Avranil Basu
Eamon B. O'Dea
Xianqiao Wang
Spencer Fox
Pejman Rohani
John M. Drake
He Li
PINN
AI4CE
78
2
0
16 Jan 2025
HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models
Tingwei Meng
Zongren Zou
Jérome Darbon
George Karniadakis
DiffM
35
2
0
15 Sep 2024
Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology
Mario De Florio
Zongren Zou
Daniele E. Schiavazzi
George Karniadakis
26
3
0
13 Aug 2024
NeuroSEM: A hybrid framework for simulating multiphysics problems by coupling PINNs and spectral elements
K. Shukla
Zongren Zou
Chi Hin Chan
Additi Pandey
Zhicheng Wang
George Karniadakis
PINN
37
7
0
30 Jul 2024
Large language models, physics-based modeling, experimental measurements: the trinity of data-scarce learning of polymer properties
Ning Liu
S. Jafarzadeh
B. Lattimer
Shuna Ni
Jim Lua
Yue Yu
AI4CE
35
1
0
03 Jul 2024
A comprehensive and FAIR comparison between MLP and KAN representations for differential equations and operator networks
K. Shukla
Juan Diego Toscano
Zhicheng Wang
Zongren Zou
George Karniadakis
24
73
0
05 Jun 2024
Large scale scattering using fast solvers based on neural operators
Zongren Zou
Adar Kahana
Enrui Zhang
Eli Turkel
Rishikesh Ranade
Jay Pathak
George Karniadakis
28
1
0
20 May 2024
Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning
Zongren Zou
Tingwei Meng
Paula Chen
Jérome Darbon
George Karniadakis
24
7
0
12 Apr 2024
Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs
S. C. Mouli
Danielle C. Maddix
S. Alizadeh
Gaurav Gupta
Andrew Stuart
Michael W. Mahoney
Yuyang Wang
UQCV
AI4CE
35
2
0
15 Mar 2024
Uncertainty quantification for deeponets with ensemble kalman inversion
Andrew Pensoneault
Xueyu Zhu
19
1
0
06 Mar 2024
Calibrated Uncertainty Quantification for Operator Learning via Conformal Prediction
Ziqi Ma
Kamyar Azizzadenesheli
A. Anandkumar
8
6
0
02 Feb 2024
Leveraging Multi-time Hamilton-Jacobi PDEs for Certain Scientific Machine Learning Problems
Paula Chen
Tingwei Meng
Zongren Zou
Jérome Darbon
George Karniadakis
AI4CE
25
5
0
22 Mar 2023
Physics-informed Neural Networks with Unknown Measurement Noise
Philipp Pilar
Niklas Wahlström
PINN
18
6
0
28 Nov 2022
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,272
0
18 Oct 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
755
0
13 Mar 2020
1