ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.12048
  4. Cited By
One Size Fits All for Semantic Shifts: Adaptive Prompt Tuning for
  Continual Learning

One Size Fits All for Semantic Shifts: Adaptive Prompt Tuning for Continual Learning

18 November 2023
Doyoung Kim
Susik Yoon
Dongmin Park
Youngjun Lee
Hwanjun Song
Jihwan Bang
Jae-Gil Lee
    VLM
ArXivPDFHTML

Papers citing "One Size Fits All for Semantic Shifts: Adaptive Prompt Tuning for Continual Learning"

4 / 4 papers shown
Title
Hyperparameters in Continual Learning: A Reality Check
Hyperparameters in Continual Learning: A Reality Check
Sungmin Cha
Kyunghyun Cho
CLL
65
2
0
14 Mar 2024
Adaptive Shortcut Debiasing for Online Continual Learning
Adaptive Shortcut Debiasing for Online Continual Learning
Doyoung Kim
Dongmin Park
Yooju Shin
Jihwan Bang
Hwanjun Song
Jae-Gil Lee
CLL
35
2
0
14 Dec 2023
Is Class-Incremental Enough for Continual Learning?
Is Class-Incremental Enough for Continual Learning?
Andrea Cossu
G. Graffieti
Lorenzo Pellegrini
Davide Maltoni
D. Bacciu
Antonio Carta
Vincenzo Lomonaco
CLL
33
30
0
06 Dec 2021
Efficiently Identifying Task Groupings for Multi-Task Learning
Efficiently Identifying Task Groupings for Multi-Task Learning
Christopher Fifty
Ehsan Amid
Zhe Zhao
Tianhe Yu
Rohan Anil
Chelsea Finn
201
235
1
10 Sep 2021
1