Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.14465
Cited By
DP-NMT: Scalable Differentially-Private Machine Translation
24 November 2023
Timour Igamberdiev
Doan Nam Long Vu
Felix Künnecke
Zhuo Yu
Jannik Holmer
Ivan Habernal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DP-NMT: Scalable Differentially-Private Machine Translation"
12 / 12 papers shown
Title
Spend Your Budget Wisely: Towards an Intelligent Distribution of the Privacy Budget in Differentially Private Text Rewriting
Stephen Meisenbacher
Chaeeun Joy Lee
Florian Matthes
46
0
0
28 Mar 2025
Investigating User Perspectives on Differentially Private Text Privatization
Stephen Meisenbacher
Alexandra Klymenko
Alexander Karpp
Florian Matthes
49
0
0
12 Mar 2025
Data-Constrained Synthesis of Training Data for De-Identification
Thomas Vakili
Aron Henriksson
Hercules Dalianis
SyDa
44
0
0
24 Feb 2025
Balls-and-Bins Sampling for DP-SGD
Lynn Chua
Badih Ghazi
Charlie Harrison
Ethan Leeman
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
80
3
0
21 Dec 2024
Scalable DP-SGD: Shuffling vs. Poisson Subsampling
Lynn Chua
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
28
5
0
06 Nov 2024
Granularity is crucial when applying differential privacy to text: An investigation for neural machine translation
Doan Nam Long Vu
Timour Igamberdiev
Ivan Habernal
39
0
0
26 Jul 2024
To share or not to share: What risks would laypeople accept to give sensitive data to differentially-private NLP systems?
Christopher F. Weiss
Frauke Kreuter
Ivan Habernal
24
4
0
13 Jul 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
165
0
01 Mar 2023
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
344
0
13 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
144
347
0
25 Sep 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,798
0
14 Dec 2020
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
134
416
0
29 Nov 2018
1