Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.14994
Cited By
Exploring Causal Learning through Graph Neural Networks: An In-depth Review
25 November 2023
Simi Job
Xiaohui Tao
Taotao Cai
Haoran Xie
Lin Li
Jianming Yong
Qing Li
CML
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploring Causal Learning through Graph Neural Networks: An In-depth Review"
9 / 9 papers shown
Title
Integrating Causality with Neurochaos Learning: Proposed Approach and Research Agenda
Nanjangud C. Narendra
Nithin Nagaraj
OOD
CML
36
0
0
23 Jan 2025
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
33
2
0
19 Dec 2023
Investigating Transfer Learning in Graph Neural Networks
Nishai Kooverjee
Steven D. James
Terence L van Zyl
GNN
31
14
0
01 Feb 2022
Relating Graph Neural Networks to Structural Causal Models
Matej Zečević
D. Dhami
Petar Velickovic
Kristian Kersting
AI4CE
CML
55
53
0
09 Sep 2021
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
110
142
0
05 Feb 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
164
590
0
31 Dec 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
278
11,677
0
09 Mar 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
162
1,775
0
02 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,811
0
25 Nov 2016
1