ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.16474
9
2

Progressive Classifier and Feature Extractor Adaptation for Unsupervised Domain Adaptation on Point Clouds

27 November 2023
Zicheng Wang
Zhen Zhao
Yiming Wu
Luping Zhou
Dong Xu
    3DPC
ArXivPDFHTML
Abstract

Unsupervised domain adaptation (UDA) is a critical challenge in the field of point cloud analysis. Previous works tackle the problem either by feature extractor adaptation to enable a shared classifier to distinguish domain-invariant features, or by classifier adaptation to evolve the classifier to recognize target-styled source features to increase its adaptation ability. However, by learning domain-invariant features, feature extractor adaptation methods fail to encode semantically meaningful target-specific information, while classifier adaptation methods rely heavily on the accurate estimation of the target distribution. In this work, we propose a novel framework that deeply couples the classifier and feature extractor adaption for 3D UDA, dubbed Progressive Classifier and Feature Extractor Adaptation (PCFEA). Our PCFEA conducts 3D UDA from two distinct perspectives: macro and micro levels. On the macro level, we propose a progressive target-styled feature augmentation (PTFA) that establishes a series of intermediate domains to enable the model to progressively adapt to the target domain. Throughout this process, the source classifier is evolved to recognize target-styled source features (\ie, classifier adaptation). On the micro level, we develop an intermediate domain feature extractor adaptation (IDFA) that performs a compact feature alignment to encourage the target-styled feature extraction gradually. In this way, PTFA and IDFA can mutually benefit each other: IDFA contributes to the distribution estimation of PTFA while PTFA constructs smoother intermediate domains to encourage an accurate feature alignment of IDFA. We validate our method on popular benchmark datasets, where our method achieves new state-of-the-art performance. Our code is available at https://github.com/xiaoyao3302/PCFEA.

View on arXiv
Comments on this paper