Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.01429
Cited By
Transformers are uninterpretable with myopic methods: a case study with bounded Dyck grammars
3 December 2023
Kaiyue Wen
Yuchen Li
Bing Liu
Andrej Risteski
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Transformers are uninterpretable with myopic methods: a case study with bounded Dyck grammars"
10 / 10 papers shown
Title
ICLR: In-Context Learning of Representations
Core Francisco Park
Andrew Lee
Ekdeep Singh Lubana
Yongyi Yang
Maya Okawa
Kento Nishi
Martin Wattenberg
Hidenori Tanaka
AIFin
114
3
0
29 Dec 2024
Training Neural Networks as Recognizers of Formal Languages
Alexandra Butoi
Ghazal Khalighinejad
Anej Svete
Josef Valvoda
Ryan Cotterell
Brian DuSell
NAI
36
2
0
11 Nov 2024
Analyzing (In)Abilities of SAEs via Formal Languages
Abhinav Menon
Manish Shrivastava
David M. Krueger
Ekdeep Singh Lubana
42
7
0
15 Oct 2024
Separations in the Representational Capabilities of Transformers and Recurrent Architectures
S. Bhattamishra
Michael Hahn
Phil Blunsom
Varun Kanade
GNN
28
9
0
13 Jun 2024
Linear Transformers are Versatile In-Context Learners
Max Vladymyrov
J. Oswald
Mark Sandler
Rong Ge
24
13
0
21 Feb 2024
Do Transformers Parse while Predicting the Masked Word?
Haoyu Zhao
A. Panigrahi
Rong Ge
Sanjeev Arora
74
31
0
14 Mar 2023
How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding
Yuchen Li
Yuan-Fang Li
Andrej Risteski
107
61
0
07 Mar 2023
Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small
Kevin Wang
Alexandre Variengien
Arthur Conmy
Buck Shlegeris
Jacob Steinhardt
210
491
0
01 Nov 2022
In-context Learning and Induction Heads
Catherine Olsson
Nelson Elhage
Neel Nanda
Nicholas Joseph
Nova Dassarma
...
Tom B. Brown
Jack Clark
Jared Kaplan
Sam McCandlish
C. Olah
240
456
0
24 Sep 2022
Probing Classifiers: Promises, Shortcomings, and Advances
Yonatan Belinkov
221
402
0
24 Feb 2021
1