ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.01429
  4. Cited By
Transformers are uninterpretable with myopic methods: a case study with
  bounded Dyck grammars

Transformers are uninterpretable with myopic methods: a case study with bounded Dyck grammars

3 December 2023
Kaiyue Wen
Yuchen Li
Bing Liu
Andrej Risteski
ArXivPDFHTML

Papers citing "Transformers are uninterpretable with myopic methods: a case study with bounded Dyck grammars"

10 / 10 papers shown
Title
ICLR: In-Context Learning of Representations
ICLR: In-Context Learning of Representations
Core Francisco Park
Andrew Lee
Ekdeep Singh Lubana
Yongyi Yang
Maya Okawa
Kento Nishi
Martin Wattenberg
Hidenori Tanaka
AIFin
114
3
0
29 Dec 2024
Training Neural Networks as Recognizers of Formal Languages
Training Neural Networks as Recognizers of Formal Languages
Alexandra Butoi
Ghazal Khalighinejad
Anej Svete
Josef Valvoda
Ryan Cotterell
Brian DuSell
NAI
36
2
0
11 Nov 2024
Analyzing (In)Abilities of SAEs via Formal Languages
Analyzing (In)Abilities of SAEs via Formal Languages
Abhinav Menon
Manish Shrivastava
David M. Krueger
Ekdeep Singh Lubana
42
7
0
15 Oct 2024
Separations in the Representational Capabilities of Transformers and
  Recurrent Architectures
Separations in the Representational Capabilities of Transformers and Recurrent Architectures
S. Bhattamishra
Michael Hahn
Phil Blunsom
Varun Kanade
GNN
28
9
0
13 Jun 2024
Linear Transformers are Versatile In-Context Learners
Linear Transformers are Versatile In-Context Learners
Max Vladymyrov
J. Oswald
Mark Sandler
Rong Ge
24
13
0
21 Feb 2024
Do Transformers Parse while Predicting the Masked Word?
Do Transformers Parse while Predicting the Masked Word?
Haoyu Zhao
A. Panigrahi
Rong Ge
Sanjeev Arora
74
31
0
14 Mar 2023
How Do Transformers Learn Topic Structure: Towards a Mechanistic
  Understanding
How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding
Yuchen Li
Yuan-Fang Li
Andrej Risteski
107
61
0
07 Mar 2023
Interpretability in the Wild: a Circuit for Indirect Object
  Identification in GPT-2 small
Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small
Kevin Wang
Alexandre Variengien
Arthur Conmy
Buck Shlegeris
Jacob Steinhardt
210
491
0
01 Nov 2022
In-context Learning and Induction Heads
In-context Learning and Induction Heads
Catherine Olsson
Nelson Elhage
Neel Nanda
Nicholas Joseph
Nova Dassarma
...
Tom B. Brown
Jack Clark
Jared Kaplan
Sam McCandlish
C. Olah
240
456
0
24 Sep 2022
Probing Classifiers: Promises, Shortcomings, and Advances
Probing Classifiers: Promises, Shortcomings, and Advances
Yonatan Belinkov
221
402
0
24 Feb 2021
1