Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.01537
Cited By
Unlocking the Potential of Federated Learning: The Symphony of Dataset Distillation via Deep Generative Latents
3 December 2023
Yuqi Jia
Saeed Vahidian
Jingwei Sun
Jianyi Zhang
Vyacheslav Kungurtsev
Neil Zhenqiang Gong
Yiran Chen
FedML
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unlocking the Potential of Federated Learning: The Symphony of Dataset Distillation via Deep Generative Latents"
7 / 7 papers shown
Title
Dataset Distillation from First Principles: Integrating Core Information Extraction and Purposeful Learning
Vyacheslav Kungurtsev
Yuanfang Peng
Jianyang Gu
Saeed Vahidian
Anthony Quinn
Fadwa Idlahcen
Yiran Chen
FedML
DD
42
2
0
02 Sep 2024
ATOM: Attention Mixer for Efficient Dataset Distillation
Samir Khaki
A. Sajedi
Kai Wang
Lucy Z. Liu
Y. Lawryshyn
Konstantinos N. Plataniotis
47
3
0
02 May 2024
Group Distributionally Robust Dataset Distillation with Risk Minimization
Saeed Vahidian
Mingyu Wang
Jianyang Gu
Vyacheslav Kungurtsev
Wei Jiang
Yiran Chen
OOD
DD
33
6
0
07 Feb 2024
Generalizing Dataset Distillation via Deep Generative Prior
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
DD
91
84
0
02 May 2023
Federated Learning on Virtual Heterogeneous Data with Local-global Distillation
Chun-Yin Huang
Rui Jin
Can Zhao
Daguang Xu
Xiaoxiao Li
FedML
DD
49
7
0
04 Mar 2023
Personalized Federated Learning by Structured and Unstructured Pruning under Data Heterogeneity
Saeed Vahidian
Mahdi Morafah
Bill Lin
59
58
0
02 May 2021
Dataset Condensation with Differentiable Siamese Augmentation
Bo-Lu Zhao
Hakan Bilen
DD
196
288
0
16 Feb 2021
1