ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.01692
  4. Cited By
Risk-Controlling Model Selection via Guided Bayesian Optimization

Risk-Controlling Model Selection via Guided Bayesian Optimization

4 December 2023
Bracha Laufer-Goldshtein
Adam Fisch
Regina Barzilay
Tommi Jaakkola
    TPM
ArXivPDFHTML

Papers citing "Risk-Controlling Model Selection via Guided Bayesian Optimization"

11 / 11 papers shown
Title
Confident magnitude-based neural network pruning
Confident magnitude-based neural network pruning
Joaquin Alvarez
37
0
0
08 Aug 2024
Fast yet Safe: Early-Exiting with Risk Control
Fast yet Safe: Early-Exiting with Risk Control
Metod Jazbec
Alexander Timans
Tin Hadvzi Veljković
K. Sakmann
Dan Zhang
C. A. Naesseth
Eric T. Nalisnick
38
5
0
31 May 2024
Conformal Validity Guarantees Exist for Any Data Distribution (and How
  to Find Them)
Conformal Validity Guarantees Exist for Any Data Distribution (and How to Find Them)
Drew Prinster
Samuel Stanton
Anqi Liu
S. Saria
34
6
0
10 May 2024
Early Time Classification with Accumulated Accuracy Gap Control
Early Time Classification with Accumulated Accuracy Gap Control
Liran Ringel
Regev Cohen
Daniel Freedman
Michael Elad
Yaniv Romano
24
6
0
01 Feb 2024
Bayesian Optimization with Conformal Prediction Sets
Bayesian Optimization with Conformal Prediction Sets
Samuel Stanton
Wesley J. Maddox
A. Wilson
33
24
0
22 Oct 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use
  Case
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
34
28
0
16 Jun 2022
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk
  Control
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control
Anastasios Nikolas Angelopoulos
Stephen Bates
Emmanuel J. Candès
Michael I. Jordan
Lihua Lei
95
125
0
03 Oct 2021
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter
  Optimization
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization
Marius Lindauer
Katharina Eggensperger
Matthias Feurer
André Biedenkapp
Difan Deng
C. Benjamins
Tim Ruhopf
René Sass
Frank Hutter
83
326
0
20 Sep 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
79
448
0
13 Jul 2021
Distribution-Free, Risk-Controlling Prediction Sets
Distribution-Free, Risk-Controlling Prediction Sets
Stephen Bates
Anastasios Nikolas Angelopoulos
Lihua Lei
Jitendra Malik
Michael I. Jordan
OOD
176
185
0
07 Jan 2021
Controllable Pareto Multi-Task Learning
Controllable Pareto Multi-Task Learning
Xi Lin
Zhiyuan Yang
Qingfu Zhang
Sam Kwong
MoE
66
73
0
13 Oct 2020
1