ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.06256
  4. Cited By
Neural Autoencoder-Based Structure-Preserving Model Order Reduction and
  Control Design for High-Dimensional Physical Systems

Neural Autoencoder-Based Structure-Preserving Model Order Reduction and Control Design for High-Dimensional Physical Systems

11 December 2023
Marco Lepri
Davide Bacciu
Cosimo Della Santina
    AI4CE
ArXivPDFHTML

Papers citing "Neural Autoencoder-Based Structure-Preserving Model Order Reduction and Control Design for High-Dimensional Physical Systems"

8 / 8 papers shown
Title
Soft Synergies: Model Order Reduction of Hybrid Soft-Rigid Robots via Optimal Strain Parameterization
Soft Synergies: Model Order Reduction of Hybrid Soft-Rigid Robots via Optimal Strain Parameterization
Abdulaziz Alkayas
A. Mathew
Daniel Feliú Talegon
Ping Deng
T. G. Thuruthel
F. Renda
101
4
0
20 Feb 2025
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
Katharina Friedl
Noémie Jaquier
Jens Lundell
Tamim Asfour
Danica Kragic
AI4CE
26
0
0
24 Oct 2024
Data-driven identification of latent port-Hamiltonian systems
Data-driven identification of latent port-Hamiltonian systems
J. Rettberg
Jonas Kneifl
Julius Herb
Patrick Buchfink
Jörg Fehr
B. Haasdonk
PINN
19
2
0
15 Aug 2024
Data-driven Model Reduction for Soft Robots via Lagrangian Operator
  Inference
Data-driven Model Reduction for Soft Robots via Lagrangian Operator Inference
Harsh Sharma
Iman Adibnazari
Jacobo Cervera-Torralba
M. Tolley
Boris Kramer
34
0
0
11 Jul 2024
Using Spectral Submanifolds for Nonlinear Periodic Control
Using Spectral Submanifolds for Nonlinear Periodic Control
Florian Mahlknecht
J. I. Alora
Shobhit Jain
Edward Schmerling
Riccardo Bonalli
George Haller
Marco Pavone
67
6
0
14 Sep 2022
Applying Machine Learning to Study Fluid Mechanics
Applying Machine Learning to Study Fluid Mechanics
Steven L. Brunton
PINN
AI4CE
37
95
0
05 Oct 2021
Combining Physics and Deep Learning to learn Continuous-Time Dynamics
  Models
Combining Physics and Deep Learning to learn Continuous-Time Dynamics Models
M. Lutter
Jan Peters
PINN
AI4CE
29
38
0
05 Oct 2021
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
121
419
0
10 Mar 2020
1