ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.06406
19
2

Partial End-to-end Reinforcement Learning for Robustness Against Modelling Error in Autonomous Racing

11 December 2023
Andrew Murdoch
J. C. Schoeman
H. W. Jordaan
ArXivPDFHTML
Abstract

In this paper, we address the issue of increasing the performance of reinforcement learning (RL) solutions for autonomous racing cars when navigating under conditions where practical vehicle modelling errors (commonly known as \emph{model mismatches}) are present. To address this challenge, we propose a partial end-to-end algorithm that decouples the planning and control tasks. Within this framework, an RL agent generates a trajectory comprising a path and velocity, which is subsequently tracked using a pure pursuit steering controller and a proportional velocity controller, respectively. In contrast, many current learning-based (i.e., reinforcement and imitation learning) algorithms utilise an end-to-end approach whereby a deep neural network directly maps from sensor data to control commands. By leveraging the robustness of a classical controller, our partial end-to-end driving algorithm exhibits better robustness towards model mismatches than standard end-to-end algorithms.

View on arXiv
Comments on this paper