ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.08365
  4. Cited By
An Invitation to Deep Reinforcement Learning

An Invitation to Deep Reinforcement Learning

13 December 2023
Bernhard Jaeger
Andreas Geiger
    OffRL
    OOD
ArXivPDFHTML

Papers citing "An Invitation to Deep Reinforcement Learning"

9 / 9 papers shown
Title
CaRL: Learning Scalable Planning Policies with Simple Rewards
CaRL: Learning Scalable Planning Policies with Simple Rewards
Bernhard Jaeger
D. Dauner
Jens Beißwenger
Simon Gerstenecker
Kashyap Chitta
Andreas Geiger
49
0
0
24 Apr 2025
VANP: Learning Where to See for Navigation with Self-Supervised
  Vision-Action Pre-Training
VANP: Learning Where to See for Navigation with Self-Supervised Vision-Action Pre-Training
Mohammad Nazeri
Junzhe Wang
Amirreza Payandeh
Xuesu Xiao
SSL
ViT
41
5
0
12 Mar 2024
End-to-end Autonomous Driving: Challenges and Frontiers
End-to-end Autonomous Driving: Challenges and Frontiers
Li Chen
Peng Wu
Kashyap Chitta
Bernhard Jaeger
Andreas Geiger
Hongyang Li
3DV
34
260
0
29 Jun 2023
Human-level Atari 200x faster
Human-level Atari 200x faster
Steven Kapturowski
Victor Campos
Ray Jiang
Nemanja Rakićević
Hado van Hasselt
Charles Blundell
Adria Puigdomenech Badia
OffRL
41
28
0
15 Sep 2022
The Primacy Bias in Deep Reinforcement Learning
The Primacy Bias in Deep Reinforcement Learning
Evgenii Nikishin
Max Schwarzer
P. DÓro
Pierre-Luc Bacon
Aaron C. Courville
OnRL
85
178
0
16 May 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
303
11,881
0
04 Mar 2022
MetricOpt: Learning to Optimize Black-Box Evaluation Metrics
MetricOpt: Learning to Optimize Black-Box Evaluation Metrics
Chen Huang
Shuangfei Zhai
Pengsheng Guo
J. Susskind
33
11
0
21 Apr 2021
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
  Open Problems
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
329
1,944
0
04 May 2020
An Introduction to Deep Reinforcement Learning
An Introduction to Deep Reinforcement Learning
Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joelle Pineau
OffRL
AI4CE
80
1,225
0
30 Nov 2018
1