ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.08744
  4. Cited By
GOEmbed: Gradient Origin Embeddings for Representation Agnostic 3D
  Feature Learning

GOEmbed: Gradient Origin Embeddings for Representation Agnostic 3D Feature Learning

14 December 2023
Animesh Karnewar
Roman Shapovalov
Tom Monnier
Andrea Vedaldi
Niloy J. Mitra
David Novotny
ArXivPDFHTML

Papers citing "GOEmbed: Gradient Origin Embeddings for Representation Agnostic 3D Feature Learning"

5 / 5 papers shown
Title
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
Lihe Yang
Bingyi Kang
Zilong Huang
Xiaogang Xu
Jiashi Feng
Hengshuang Zhao
VLM
133
681
0
19 Jan 2024
3DGen: Triplane Latent Diffusion for Textured Mesh Generation
3DGen: Triplane Latent Diffusion for Textured Mesh Generation
Anchit Gupta
Wenhan Xiong
Yixin Nie
Anchit Gupta
Barlas Oğuz
DiffM
89
156
0
09 Mar 2023
ReLU Fields: The Little Non-linearity That Could
ReLU Fields: The Little Non-linearity That Could
Animesh Karnewar
Tobias Ritschel
Oliver Wang
Niloy J. Mitra
126
100
0
22 May 2022
Neural Sparse Voxel Fields
Neural Sparse Voxel Fields
Lingjie Liu
Jiatao Gu
Kyaw Zaw Lin
Tat-Seng Chua
Christian Theobalt
177
1,234
0
22 Jul 2020
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
161
1,926
0
24 Oct 2016
1