ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.09589
  4. Cited By
Improving Cross-domain Few-shot Classification with Multilayer
  Perceptron

Improving Cross-domain Few-shot Classification with Multilayer Perceptron

15 December 2023
Shuanghao Bai
Wanqi Zhou
Zhirong Luan
Donglin Wang
Badong Chen
ArXivPDFHTML

Papers citing "Improving Cross-domain Few-shot Classification with Multilayer Perceptron"

7 / 7 papers shown
Title
Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms
Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms
Fatemeh Askari
Amirreza Fateh
Mohammad Reza Mohammadi
70
3
0
17 Jan 2025
Onboard Satellite Image Classification for Earth Observation: A Comparative Study of ViT Models
Onboard Satellite Image Classification for Earth Observation: A Comparative Study of ViT Models
Thanh-Dung Le
Vu Nguyen Ha
T. Nguyen
G. Eappen
P. Thiruvasagam
...
J. L. González-Rios
Luis M. Garces-Socarras
Symeon Chatzinotas
Juan Carlos Merlano-Duncan
Symeon Chatzinotas
31
4
0
05 Sep 2024
Prompt-based Distribution Alignment for Unsupervised Domain Adaptation
Prompt-based Distribution Alignment for Unsupervised Domain Adaptation
Shuanghao Bai
Min Zhang
Wanqi Zhou
Siteng Huang
Zhirong Luan
Donglin Wang
Badong Chen
OOD
VLM
22
32
0
15 Dec 2023
Improved Baselines with Momentum Contrastive Learning
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
243
3,367
0
09 Mar 2020
Cross Attention Network for Few-shot Classification
Cross Attention Network for Few-shot Classification
Rui Hou
Hong Chang
Bingpeng Ma
Shiguang Shan
Xilin Chen
202
629
0
17 Oct 2019
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
172
639
0
19 Sep 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
281
11,677
0
09 Mar 2017
1