ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.10200
13
0

Deep Active Perception for Object Detection using Navigation Proposals

15 December 2023
Stefanos Ginargiros
Nikolaos Passalis
Anastasios Tefas
    ObjD
ArXivPDFHTML
Abstract

Deep Learning (DL) has brought significant advances to robotics vision tasks. However, most existing DL methods have a major shortcoming, they rely on a static inference paradigm inherent in traditional computer vision pipelines. On the other hand, recent studies have found that active perception improves the perception abilities of various models by going beyond these static paradigms. Despite the significant potential of active perception, it poses several challenges, primarily involving significant changes in training pipelines for deep learning models. To overcome these limitations, in this work, we propose a generic supervised active perception pipeline for object detection that can be trained using existing off-the-shelf object detectors, while also leveraging advances in simulation environments. To this end, the proposed method employs an additional neural network architecture that estimates better viewpoints in cases where the object detector confidence is insufficient. The proposed method was evaluated on synthetic datasets, constructed within the Webots robotics simulator, showcasing its effectiveness in two object detection cases.

View on arXiv
Comments on this paper