ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.10789
27
0

Federated learning with differential privacy and an untrusted aggregator

17 December 2023
Kunlong Liu
Trinabh Gupta
ArXivPDFHTML
Abstract

Federated learning for training models over mobile devices is gaining popularity. Current systems for this task exhibit significant trade-offs between model accuracy, privacy guarantee, and device efficiency. For instance, Oort (OSDI 2021) provides excellent accuracy and efficiency but requires a trusted central server. On the other hand, Orchard (OSDI 2020) provides good accuracy and the rigorous guarantee of differential privacy over an untrusted server, but creates huge overhead for the devices. This paper describes Aero, a new federated learning system that significantly improves this trade-off. Aero guarantees good accuracy, differential privacy over an untrusted server, and keeps the device overhead low. The key idea of Aero is to tune system architecture and design to a specific set of popular, federated learning algorithms. This tuning requires novel optimizations and techniques, e.g., a new protocol to securely aggregate updates from devices. An evaluation of Aero demonstrates that it provides comparable accuracy to plain federated learning (without differential privacy), and it improves efficiency (CPU and network) over Orchard by up to 105×10^5\times105×.

View on arXiv
Comments on this paper