ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.10789
  4. Cited By
Federated learning with differential privacy and an untrusted aggregator

Federated learning with differential privacy and an untrusted aggregator

17 December 2023
Kunlong Liu
Trinabh Gupta
ArXivPDFHTML

Papers citing "Federated learning with differential privacy and an untrusted aggregator"

10 / 10 papers shown
Title
Hercules: Boosting the Performance of Privacy-preserving Federated
  Learning
Hercules: Boosting the Performance of Privacy-preserving Federated Learning
Guowen Xu
Xingshuo Han
Shengmin Xu
Tianwei Zhang
Hongwei Li
Xinyi Huang
R. Deng
FedML
14
16
0
11 Jul 2022
FedLess: Secure and Scalable Federated Learning Using Serverless
  Computing
FedLess: Secure and Scalable Federated Learning Using Serverless Computing
Andreas Grafberger
Mohak Chadha
Anshul Jindal
Jianfeng Gu
Michael Gerndt
36
49
0
05 Nov 2021
SecFL: Confidential Federated Learning using TEEs
SecFL: Confidential Federated Learning using TEEs
D. Quoc
Christof Fetzer
FedML
16
16
0
03 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
144
348
0
25 Sep 2021
Dubhe: Towards Data Unbiasedness with Homomorphic Encryption in
  Federated Learning Client Selection
Dubhe: Towards Data Unbiasedness with Homomorphic Encryption in Federated Learning Client Selection
Shulai Zhang
Zirui Li
Quan Chen
Wenli Zheng
Jingwen Leng
M. Guo
FedML
54
32
0
08 Sep 2021
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
Sijun Tan
Brian Knott
Yuan Tian
David J. Wu
BDL
FedML
55
182
0
22 Apr 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
178
154
0
26 Feb 2021
Secure Weighted Aggregation for Federated Learning
Secure Weighted Aggregation for Federated Learning
Jiale Guo
Ziyao Liu
K. Lam
Jun Zhao
Yiqiang Chen
C. Xing
79
13
0
17 Oct 2020
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
162
564
0
27 Jul 2020
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,549
0
17 Apr 2017
1