Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.13435
Cited By
The Adaptive Arms Race: Redefining Robustness in AI Security
20 December 2023
Ilias Tsingenopoulos
Vera Rimmer
Davy Preuveneers
Fabio Pierazzi
Lorenzo Cavallaro
Wouter Joosen
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Adaptive Arms Race: Redefining Robustness in AI Security"
8 / 8 papers shown
Title
Stateful Defenses for Machine Learning Models Are Not Yet Secure Against Black-box Attacks
Ryan Feng
Ashish Hooda
Neal Mangaokar
Kassem Fawaz
S. Jha
Atul Prakash
AAML
24
10
0
11 Mar 2023
Preprocessors Matter! Realistic Decision-Based Attacks on Machine Learning Systems
Chawin Sitawarin
Florian Tramèr
Nicholas Carlini
AAML
38
6
0
07 Oct 2022
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
153
314
0
15 Dec 2021
A Unified Game-Theoretic Interpretation of Adversarial Robustness
Jie Ren
Die Zhang
Yisen Wang
Lu Chen
Zhanpeng Zhou
...
Xu Cheng
Xin Eric Wang
Meng Zhou
Jie Shi
Quanshi Zhang
AAML
24
21
0
12 Mar 2021
On the Effectiveness of Small Input Noise for Defending Against Query-based Black-Box Attacks
Junyoung Byun
Hyojun Go
Changick Kim
AAML
82
17
0
13 Jan 2021
AutoDropout: Learning Dropout Patterns to Regularize Deep Networks
Hieu H. Pham
Quoc V. Le
26
50
0
05 Jan 2021
Sign-OPT: A Query-Efficient Hard-label Adversarial Attack
Minhao Cheng
Simranjit Singh
Patrick H. Chen
Pin-Yu Chen
Sijia Liu
Cho-Jui Hsieh
AAML
90
197
0
24 Sep 2019
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
246
5,046
0
05 Nov 2016
1