ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.00390
13
0

Horizontal Federated Computer Vision

31 December 2023
Paul K. Mandal
Cole Leo
Connor Hurley
    FedML
    ObjD
ArXivPDFHTML
Abstract

In the modern world, the amount of visual data recorded has been rapidly increasing. In many cases, data is stored in geographically distinct locations and thus requires a large amount of time and space to consolidate. Sometimes, there are also regulations for privacy protection which prevent data consolidation. In this work, we present federated implementations for object detection and recognition using a federated Faster R-CNN (FRCNN) and image segmentation using a federated Fully Convolutional Network (FCN). Our FRCNN was trained on 5000 examples of the COCO2017 dataset while our FCN was trained on the entire train set of the CamVid dataset. The proposed federated models address the challenges posed by the increasing volume and decentralized nature of visual data, offering efficient solutions in compliance with privacy regulations.

View on arXiv
Comments on this paper