ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.02879
  4. Cited By
Efficient Parameter Optimisation for Quantum Kernel Alignment: A
  Sub-sampling Approach in Variational Training

Efficient Parameter Optimisation for Quantum Kernel Alignment: A Sub-sampling Approach in Variational Training

5 January 2024
M. E. Sahin
Benjamin C. B. Symons
Pushpak Pati
F. Minhas
Declan Millar
M. Gabrani
J. Robertus
Stefano Mensa
ArXivPDFHTML

Papers citing "Efficient Parameter Optimisation for Quantum Kernel Alignment: A Sub-sampling Approach in Variational Training"

2 / 2 papers shown
Title
The complexity of quantum support vector machines
The complexity of quantum support vector machines
Gian Gentinetta
Arne Thomsen
David Sutter
Stefan Woerner
37
40
0
28 Feb 2022
Importance of Kernel Bandwidth in Quantum Machine Learning
Importance of Kernel Bandwidth in Quantum Machine Learning
Ruslan Shaydulin
Stefan M. Wild
27
37
0
09 Nov 2021
1