ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.04133
  4. Cited By
SynHING: Synthetic Heterogeneous Information Network Generation for
  Graph Learning and Explanation

SynHING: Synthetic Heterogeneous Information Network Generation for Graph Learning and Explanation

7 January 2024
Ming-Yi Hong
Yi-Hsiang Huang
Shao-En Lin
You-Chen Teng
Chih-Yu Wang
Che Lin
ArXivPDFHTML

Papers citing "SynHING: Synthetic Heterogeneous Information Network Generation for Graph Learning and Explanation"

6 / 6 papers shown
Title
GraphWorld: Fake Graphs Bring Real Insights for GNNs
GraphWorld: Fake Graphs Bring Real Insights for GNNs
John Palowitch
Anton Tsitsulin
Brandon Mayer
Bryan Perozzi
GNN
174
59
0
28 Feb 2022
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
156
463
0
31 Dec 2020
Heterogeneous Graph Transformer
Heterogeneous Graph Transformer
Ziniu Hu
Yuxiao Dong
Kuansan Wang
Yizhou Sun
167
1,157
0
03 Mar 2020
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
173
907
0
02 Mar 2020
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
262
10,183
0
12 Dec 2018
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
148
22,469
0
09 Jun 2011
1