ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.07782
  4. Cited By
Exploring Masked Autoencoders for Sensor-Agnostic Image Retrieval in
  Remote Sensing

Exploring Masked Autoencoders for Sensor-Agnostic Image Retrieval in Remote Sensing

15 January 2024
Jakob Hackstein
Gencer Sumbul
Kai Norman Clasen
Begum Demir
ArXivPDFHTML

Papers citing "Exploring Masked Autoencoders for Sensor-Agnostic Image Retrieval in Remote Sensing"

7 / 7 papers shown
Title
REJEPA: A Novel Joint-Embedding Predictive Architecture for Efficient Remote Sensing Image Retrieval
REJEPA: A Novel Joint-Embedding Predictive Architecture for Efficient Remote Sensing Image Retrieval
Shabnam Choudhury
Yash Salunkhe
Sarthak Mehrotra
Biplab Banerjee
29
0
0
04 Apr 2025
Multispectral to Hyperspectral using Pretrained Foundational model
Multispectral to Hyperspectral using Pretrained Foundational model
Ruben Gonzalez
C. Albrecht
Nassim Ait Ali Braham
Devyani Lambhate
Joao Lucas de Sousa Almeida
P. Fraccaro
Benedikt Blumenstiel
Thomas Brunschwiler
Ranjini Bangalore
59
0
0
26 Feb 2025
Increasing the Robustness of Model Predictions to Missing Sensors in
  Earth Observation
Increasing the Robustness of Model Predictions to Missing Sensors in Earth Observation
Francisco Mena
Diego Arenas
A. Dengel
OOD
16
0
0
22 Jul 2024
OmniSat: Self-Supervised Modality Fusion for Earth Observation
OmniSat: Self-Supervised Modality Fusion for Earth Observation
Guillaume Astruc
Nicolas Gonthier
Clement Mallet
Loic Landrieu
23
23
0
12 Apr 2024
Mission Critical -- Satellite Data is a Distinct Modality in Machine
  Learning
Mission Critical -- Satellite Data is a Distinct Modality in Machine Learning
Esther Rolf
Konstantin Klemmer
Caleb Robinson
Hannah Kerner
21
35
0
02 Feb 2024
Scale-MAE: A Scale-Aware Masked Autoencoder for Multiscale Geospatial
  Representation Learning
Scale-MAE: A Scale-Aware Masked Autoencoder for Multiscale Geospatial Representation Learning
Colorado Reed
Ritwik Gupta
Shufan Li
S. Brockman
Christopher Funk
Brian Clipp
Kurt Keutzer
Salvatore Candido
M. Uyttendaele
Trevor Darrell
113
165
0
30 Dec 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
1