Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2401.08898
Cited By
Bridging State and History Representations: Understanding Self-Predictive RL
17 January 2024
Tianwei Ni
Benjamin Eysenbach
Erfan Seyedsalehi
Michel Ma
Clement Gehring
Aditya Mahajan
Pierre-Luc Bacon
AI4TS
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bridging State and History Representations: Understanding Self-Predictive RL"
18 / 18 papers shown
Title
seq-JEPA: Autoregressive Predictive Learning of Invariant-Equivariant World Models
Hafez Ghaemi
Eilif Muller
Shahab Bakhtiari
42
0
0
06 May 2025
Measuring In-Context Computation Complexity via Hidden State Prediction
Vincent Herrmann
Róbert Csordás
Jürgen Schmidhuber
34
0
0
17 Mar 2025
Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
71
1
0
20 Feb 2025
Habitizing Diffusion Planning for Efficient and Effective Decision Making
Haofei Lu
Yifei Shen
Dongsheng Li
Junliang Xing
Dongqi Han
54
0
0
10 Feb 2025
Towards General-Purpose Model-Free Reinforcement Learning
Scott Fujimoto
P. DÓro
Amy Zhang
Yuandong Tian
Michael Rabbat
OffRL
32
3
0
28 Jan 2025
SR-Reward: Taking The Path More Traveled
Seyed Mahdi Basiri Azad
Zahra Padar
Gabriel Kalweit
Joschka Boedecker
OffRL
64
0
0
04 Jan 2025
Dynamical-VAE-based Hindsight to Learn the Causal Dynamics of Factored-POMDPs
Chao Han
Debabrota Basu
M. Mangan
Eleni Vasilaki
Aditya Gilra
27
0
0
12 Nov 2024
MAD-TD: Model-Augmented Data stabilizes High Update Ratio RL
C. Voelcker
Marcel Hussing
Eric Eaton
Amir-massoud Farahmand
Igor Gilitschenski
33
1
0
11 Oct 2024
Agent-state based policies in POMDPs: Beyond belief-state MDPs
Amit Sinha
Aditya Mahajan
11
2
0
24 Sep 2024
When does Self-Prediction help? Understanding Auxiliary Tasks in Reinforcement Learning
C. Voelcker
Tyler Kastner
Igor Gilitschenski
Amir-massoud Farahmand
SSL
22
2
0
25 Jun 2024
Learning Temporal Distances: Contrastive Successor Features Can Provide a Metric Structure for Decision-Making
Vivek Myers
Chongyi Zheng
Anca Dragan
Sergey Levine
Benjamin Eysenbach
OffRL
23
7
0
24 Jun 2024
Representation Learning For Efficient Deep Multi-Agent Reinforcement Learning
Dom Huh
Prasant Mohapatra
19
1
0
05 Jun 2024
iQRL -- Implicitly Quantized Representations for Sample-efficient Reinforcement Learning
Aidan Scannell
Kalle Kujanpää
Yi Zhao
Mohammadreza Nakhaei
Arno Solin
J. Pajarinen
SSL
22
5
0
04 Jun 2024
A Unifying Framework for Action-Conditional Self-Predictive Reinforcement Learning
Khimya Khetarpal
Z. Guo
Bernardo Avila-Pires
Yunhao Tang
Clare Lyle
Mark Rowland
N. Heess
Diana Borsa
A. Guez
Will Dabney
24
0
0
04 Jun 2024
Do Transformer World Models Give Better Policy Gradients?
Michel Ma
Tianwei Ni
Clement Gehring
P. DÓro
Pierre-Luc Bacon
26
0
0
07 Feb 2024
Simplifying Model-based RL: Learning Representations, Latent-space Models, and Policies with One Objective
Raj Ghugare
Homanga Bharadhwaj
Benjamin Eysenbach
Sergey Levine
Ruslan Salakhutdinov
OffRL
33
25
0
18 Sep 2022
Light-weight probing of unsupervised representations for Reinforcement Learning
Wancong Zhang
Anthony GX-Chen
Vlad Sobal
Yann LeCun
Nicolas Carion
SSL
OffRL
15
13
0
25 Aug 2022
The Distracting Control Suite -- A Challenging Benchmark for Reinforcement Learning from Pixels
Austin Stone
Oscar Ramirez
K. Konolige
Rico Jonschkowski
124
101
0
07 Jan 2021
1