ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.09520
  4. Cited By
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics
  Learning and Control

Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics Learning and Control

17 January 2024
T. Duong
Abdullah Altawaitan
Jason Stanley
Nikolay A. Atanasov
ArXivPDFHTML

Papers citing "Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics Learning and Control"

10 / 10 papers shown
Title
Learned Perceptive Forward Dynamics Model for Safe and Platform-aware Robotic Navigation
Learned Perceptive Forward Dynamics Model for Safe and Platform-aware Robotic Navigation
Pascal Roth
Jonas Frey
César Cadena
Marco Hutter
28
0
0
27 Apr 2025
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Cyrus Neary
Nathan Tsao
Ufuk Topcu
72
1
0
15 Dec 2024
Optimal Potential Shaping on SE(3) via Neural ODEs on Lie Groups
Optimal Potential Shaping on SE(3) via Neural ODEs on Lie Groups
Yannik P. Wotte
Federico Califano
Stefano Stramigioli
AI4CE
11
1
0
25 Jan 2024
Learning Interpretable Dynamics from Images of a Freely Rotating 3D
  Rigid Body
Learning Interpretable Dynamics from Images of a Freely Rotating 3D Rigid Body
J. Mason
Christine Allen-Blanchette
Nicholas Zolman
Elizabeth Davison
Naomi Ehrich Leonard
3DH
AI4CE
21
8
0
23 Sep 2022
LEMURS: Learning Distributed Multi-Robot Interactions
LEMURS: Learning Distributed Multi-Robot Interactions
Eduardo Sebastián
T. Duong
Nikolay A. Atanasov
Eduardo Montijano
C. Sagüés
62
8
0
20 Sep 2022
ModLaNets: Learning Generalisable Dynamics via Modularity and Physical
  Inductive Bias
ModLaNets: Learning Generalisable Dynamics via Modularity and Physical Inductive Bias
Yupu Lu
Shi-Min Lin
Guanqi Chen
Jia-Yu Pan
16
6
0
24 Jun 2022
Combining Physics and Deep Learning to learn Continuous-Time Dynamics
  Models
Combining Physics and Deep Learning to learn Continuous-Time Dynamics Models
M. Lutter
Jan Peters
PINN
AI4CE
27
38
0
05 Oct 2021
Neural Networks with Physics-Informed Architectures and Constraints for
  Dynamical Systems Modeling
Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling
Franck Djeumou
Cyrus Neary
Eric Goubault
S. Putot
Ufuk Topcu
PINN
AI4CE
32
57
0
14 Sep 2021
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
121
364
0
10 Mar 2020
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
139
219
0
29 Sep 2019
1