ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.11960
  4. Cited By
Observation-Guided Meteorological Field Downscaling at Station Scale: A
  Benchmark and a New Method

Observation-Guided Meteorological Field Downscaling at Station Scale: A Benchmark and a New Method

22 January 2024
Zili Liu
Hao Chen
Lei Bai
Wenyuan Li
Keyan Chen
Zhengyi Wang
Wanli Ouyang
Zhengxia Zou
Z. Shi
ArXivPDFHTML

Papers citing "Observation-Guided Meteorological Field Downscaling at Station Scale: A Benchmark and a New Method"

3 / 3 papers shown
Title
Physically Constrained Generative Adversarial Networks for Improving Precipitation Fields from Earth System Models
Physically Constrained Generative Adversarial Networks for Improving Precipitation Fields from Earth System Models
P. Hess
Markus Drüke
S. Petri
Felix M. Strnad
Niklas Boers
28
59
0
03 Jan 2025
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time
  Super-Resolution Framework
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
179
140
0
01 May 2020
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
229
74,467
0
18 May 2015
1