ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.13229
  4. Cited By
From Random to Informed Data Selection: A Diversity-Based Approach to
  Optimize Human Annotation and Few-Shot Learning

From Random to Informed Data Selection: A Diversity-Based Approach to Optimize Human Annotation and Few-Shot Learning

24 January 2024
Alexandre Alcoforado
Thomas Palmeira Ferraz
Lucas Hideki Okamura
Israel Campos Fama
Arnold Moya Lavado
Bárbara Dias Bueno
Bruno Veloso
Anna Helena Reali Costa
ArXivPDFHTML

Papers citing "From Random to Informed Data Selection: A Diversity-Based Approach to Optimize Human Annotation and Few-Shot Learning"

3 / 3 papers shown
Title
Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models
Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models
Yulei Qin
Yuncheng Yang
Pengcheng Guo
Gang Li
Hang Shao
Yuchen Shi
Zihan Xu
Yun Gu
Ke Li
Xing Sun
ALM
85
11
0
31 Dec 2024
Efficient Few-Shot Learning Without Prompts
Efficient Few-Shot Learning Without Prompts
Lewis Tunstall
Nils Reimers
Unso Eun Seo Jo
Luke Bates
Daniel Korat
Moshe Wasserblat
Oren Pereg
VLM
26
180
0
22 Sep 2022
The Perils of Using Mechanical Turk to Evaluate Open-Ended Text
  Generation
The Perils of Using Mechanical Turk to Evaluate Open-Ended Text Generation
Marzena Karpinska
Nader Akoury
Mohit Iyyer
204
106
0
14 Sep 2021
1