ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.13282
  4. Cited By
RefreshNet: Learning Multiscale Dynamics through Hierarchical Refreshing

RefreshNet: Learning Multiscale Dynamics through Hierarchical Refreshing

24 January 2024
Junaid Farooq
Danish Rafiq
Pantelis R. Vlachas
M. A. Bazaz
ArXivPDFHTML

Papers citing "RefreshNet: Learning Multiscale Dynamics through Hierarchical Refreshing"

3 / 3 papers shown
Title
Deep autoencoders for physics-constrained data-driven nonlinear
  materials modeling
Deep autoencoders for physics-constrained data-driven nonlinear materials modeling
Xiaolong He
Qizhi He
Jiun-Shyan Chen
AI4CE
PINN
SyDa
29
55
0
03 Sep 2022
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
Manuela Brenner
Florian Hess
Jonas M. Mikhaeil
Leonard Bereska
Zahra Monfared
Po-Chen Kuo
Daniel Durstewitz
AI4CE
35
29
0
06 Jul 2022
Data-driven discovery of intrinsic dynamics
Data-driven discovery of intrinsic dynamics
D. Floryan
M. Graham
AI4CE
85
70
0
12 Aug 2021
1