ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.14161
  4. Cited By
Adapting tree-based multiple imputation methods for multi-level data? A simulation study

Adapting tree-based multiple imputation methods for multi-level data? A simulation study

25 January 2024
Ketevan Gurtskaia
Jakob Schwerter
Philipp Doebler
Markus Pauly
Philipp Doebler
    AI4CE
ArXivPDFHTML

Papers citing "Adapting tree-based multiple imputation methods for multi-level data? A simulation study"

4 / 4 papers shown
Title
Evaluating tree-based imputation methods as an alternative to MICE PMM
  for drawing inference in empirical studies
Evaluating tree-based imputation methods as an alternative to MICE PMM for drawing inference in empirical studies
Jakob Schwerter
Ketevan Gurtskaia
Andrés Romero
Birgit Zeyer-Gliozzo
Markus Pauly
16
2
0
17 Jan 2024
Random Forest Missing Data Algorithms
Random Forest Missing Data Algorithms
Fei Tang
H. Ishwaran
48
515
0
19 Jan 2017
ranger: A Fast Implementation of Random Forests for High Dimensional
  Data in C++ and R
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
93
2,708
0
18 Aug 2015
MissForest - nonparametric missing value imputation for mixed-type data
MissForest - nonparametric missing value imputation for mixed-type data
D. Stekhoven
Peter Buhlmann
157
4,191
0
04 May 2011
1