Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2401.16796
Cited By
Learnable Prompt as Pseudo-Imputation: Rethinking the Necessity of Traditional EHR Data Imputation in Downstream Clinical Prediction
30 January 2024
Weibin Liao
Yinghao Zhu
Zixiang Wang
Xu Chu
Yasha Wang
Liantao Ma
Yasha Wang
Liantao Ma
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learnable Prompt as Pseudo-Imputation: Rethinking the Necessity of Traditional EHR Data Imputation in Downstream Clinical Prediction"
5 / 5 papers shown
Title
A Comprehensive Benchmark for COVID-19 Predictive Modeling Using Electronic Health Records in Intensive Care
Junyi Gao
Yinghao Zhu
Wenqing Wang
Yasha Wang
Wen Tang
Ewen M. Harrison
Liantao Ma
OOD
35
15
0
16 Sep 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
236
780
0
14 Oct 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
278
3,784
0
18 Apr 2021
Language Models as Knowledge Bases?
Fabio Petroni
Tim Rocktaschel
Patrick Lewis
A. Bakhtin
Yuxiang Wu
Alexander H. Miller
Sebastian Riedel
KELM
AI4MH
396
2,576
0
03 Sep 2019
Recurrent Neural Networks for Multivariate Time Series with Missing Values
Zhengping Che
S. Purushotham
Kyunghyun Cho
David Sontag
Yan Liu
AI4TS
197
1,892
0
06 Jun 2016
1