Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.00326
Cited By
PirateNets: Physics-informed Deep Learning with Residual Adaptive Networks
1 February 2024
Sifan Wang
Bowen Li
Yuhan Chen
P. Perdikaris
AI4CE
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PirateNets: Physics-informed Deep Learning with Residual Adaptive Networks"
21 / 21 papers shown
Title
Physics-informed Temporal Difference Metric Learning for Robot Motion Planning
Ruiqi Ni
Zherong Pan
A. H. Qureshi
SSL
29
0
0
09 May 2025
Mask-PINNs: Regulating Feature Distributions in Physics-Informed Neural Networks
Feilong Jiang
Xiaonan Hou
Jianqiao Ye
Min Xia
OOD
PINN
27
0
0
09 May 2025
Perception-Informed Neural Networks: Beyond Physics-Informed Neural Networks
Mehran Mazandarani
Marzieh Najariyan
PINN
AI4CE
28
0
0
02 May 2025
EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
Hamidreza Eivazi
Jendrik-Alexander Tröger
Stefan H. A. Wittek
Stefan Hartmann
Andreas Rausch
AI4CE
41
0
0
27 Mar 2025
Can Real-to-Sim Approaches Capture Dynamic Fabric Behavior for Robotic Fabric Manipulation?
Yingdong Ru
Lipeng Zhuang
Zhuo He
Florent P. Audonnet
Gerardo Aragon-Caramasa
AI4CE
51
0
0
20 Mar 2025
Gradient Alignment in Physics-informed Neural Networks: A Second-Order Optimization Perspective
Sifan Wang
Ananyae Kumar Bhartari
Bowen Li
P. Perdikaris
PINN
54
4
0
02 Feb 2025
About rectified sigmoid function for enhancing the accuracy of Physics-Informed Neural Networks
V. A. Es'kin
Alexey O. Malkhanov
Mikhail E. Smorkalov
MLT
41
0
0
31 Dec 2024
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
22
2
0
04 Oct 2024
HyResPINNs: Hybrid Residual Networks for Adaptive Neural and RBF Integration in Solving PDEs
Madison Cooley
Robert M. Kirby
Shandian Zhe
Varun Shankar
PINN
AI4CE
20
0
0
04 Oct 2024
Deep Learning Alternatives of the Kolmogorov Superposition Theorem
Leonardo Ferreira Guilhoto
P. Perdikaris
38
7
0
02 Oct 2024
KAN: Kolmogorov-Arnold Networks
Ziming Liu
Yixuan Wang
Sachin Vaidya
Fabian Ruehle
James Halverson
Marin Soljacic
Thomas Y. Hou
Max Tegmark
72
460
0
30 Apr 2024
BiLO: Bilevel Local Operator Learning for PDE inverse problems
Ray Zirui Zhang
Xiaohui Xie
John S. Lowengrub
63
1
0
27 Apr 2024
Learning in PINNs: Phase transition, total diffusion, and generalization
Sokratis J. Anagnostopoulos
Juan Diego Toscano
Nikolaos Stergiopulos
George Karniadakis
24
10
0
27 Mar 2024
Random Weight Factorization Improves the Training of Continuous Neural Representations
Sifan Wang
Hanwen Wang
Jacob H. Seidman
P. Perdikaris
21
9
0
03 Oct 2022
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
37
207
0
16 Jul 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
69
220
0
26 Apr 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
131
437
0
18 Dec 2020
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
91
125
0
14 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,272
0
18 Oct 2020
Multi-scale Deep Neural Network (MscaleDNN) for Solving Poisson-Boltzmann Equation in Complex Domains
Ziqi Liu
Wei Cai
Zhi-Qin John Xu
AI4CE
155
122
0
22 Jul 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
506
0
11 Mar 2020
1