Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.00853
Cited By
LTAU-FF: Loss Trajectory Analysis for Uncertainty in Atomistic Force Fields
1 February 2024
Joshua A. Vita
Amit Samanta
Fei Zhou
Vincenzo Lordi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"LTAU-FF: Loss Trajectory Analysis for Uncertainty in Atomistic Force Fields"
7 / 7 papers shown
Title
Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles
Aik Rui Tan
S. Urata
Samuel Goldman
Johannes C. B. Dietschreit
Rafael Gómez-Bombarelli
BDL
16
41
0
02 May 2023
Simfluence: Modeling the Influence of Individual Training Examples by Simulating Training Runs
Kelvin Guu
Albert Webson
Ellie Pavlick
Lucas Dixon
Ian Tenney
Tolga Bolukbasi
TDI
63
33
0
14 Mar 2023
GRAD-MATCH: Gradient Matching based Data Subset Selection for Efficient Deep Model Training
Krishnateja Killamsetty
D. Sivasubramanian
Ganesh Ramakrishnan
A. De
Rishabh K. Iyer
OOD
78
184
0
27 Feb 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
183
1,218
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
207
370
0
20 Oct 2020
Estimating Example Difficulty Using Variance of Gradients
Chirag Agarwal
Daniel D'souza
Sara Hooker
190
103
0
26 Aug 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
1