Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.02285
Cited By
SynthDST: Synthetic Data is All You Need for Few-Shot Dialog State Tracking
3 February 2024
Atharva Kulkarni
Bo-Hsiang Tseng
Joel Ruben Antony Moniz
Dhivya Piraviperumal
Hong-ye Yu
Shruti Bhargava
SyDa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SynthDST: Synthetic Data is All You Need for Few-Shot Dialog State Tracking"
6 / 6 papers shown
Title
Self-seeding and Multi-intent Self-instructing LLMs for Generating Intent-aware Information-Seeking dialogs
Arian Askari
Roxana Petcu
Chuan Meng
Mohammad Aliannejadi
Amin Abolghasemi
Evangelos Kanoulas
Suzan Verberne
21
7
0
18 Feb 2024
ASDOT: Any-Shot Data-to-Text Generation with Pretrained Language Models
Jiannan Xiang
Zhengzhong Liu
Yucheng Zhou
Eric P. Xing
Zhiting Hu
37
16
0
09 Oct 2022
Controllable Dialogue Simulation with In-Context Learning
Zekun Li
Wenhu Chen
Shiyang Li
Hong Wang
Jingu Qian
Xi Yan
133
44
0
09 Oct 2022
SYNERGY: Building Task Bots at Scale Using Symbolic Knowledge and Machine Teaching
Baolin Peng
Chunyuan Li
Zhu Zhang
Jinchao Li
Chenguang Zhu
Jianfeng Gao
60
3
0
21 Oct 2021
What Makes Good In-Context Examples for GPT-
3
3
3
?
Jiachang Liu
Dinghan Shen
Yizhe Zhang
Bill Dolan
Lawrence Carin
Weizhu Chen
AAML
RALM
275
1,296
0
17 Jan 2021
Few Shot Dialogue State Tracking using Meta-learning
Saket Dingliwal
Bill Gao
Sanchit Agarwal
Chien-Wei Lin
Tagyoung Chung
Dilek Z. Hakkani-Tür
OffRL
43
19
0
17 Jan 2021
1