Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2402.02287
Cited By
v1
v2
v3
v4 (latest)
Future Directions in the Theory of Graph Machine Learning
3 February 2024
Christopher Morris
Fabrizio Frasca
Nadav Dym
Haggai Maron
.Ismail .Ilkan Ceylan
Ron Levie
Derek Lim
Michael M. Bronstein
Martin Grohe
Stefanie Jegelka
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Future Directions in the Theory of Graph Machine Learning"
3 / 3 papers shown
Title
Graph Representational Learning: When Does More Expressivity Hurt Generalization?
Sohir Maskey
Raffaele Paolino
Fabian Jogl
Gitta Kutyniok
Johannes F. Lutzeyer
261
2
0
16 May 2025
The Expressive Power of Graph Neural Networks: A Survey
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2023
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
408
41
0
16 Aug 2023
Convergence of Message Passing Graph Neural Networks with Generic Aggregation On Large Random Graphs
Matthieu Cordonnier
Nicolas Keriven
Nicolas M Tremblay
Samuel Vaiter
GNN
464
12
0
21 Apr 2023
1