ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.04924
  4. Cited By
Two Trades is not Baffled: Condensing Graph via Crafting Rational
  Gradient Matching

Two Trades is not Baffled: Condensing Graph via Crafting Rational Gradient Matching

7 February 2024
Tianle Zhang
Yuchen Zhang
Kun Wang
Kai Wang
Beining Yang
Kaipeng Zhang
Wenqi Shao
Ping Liu
Joey Tianyi Zhou
Yang You
    DD
ArXivPDFHTML

Papers citing "Two Trades is not Baffled: Condensing Graph via Crafting Rational Gradient Matching"

12 / 12 papers shown
Title
A Large-Scale Study on Video Action Dataset Condensation
A Large-Scale Study on Video Action Dataset Condensation
Yang Chen
Sheng Guo
Bo Zheng
Limin Wang
DD
77
2
0
13 Mar 2025
Graph Condensation: A Survey
Graph Condensation: A Survey
Xin Gao
Junliang Yu
Wei Jiang
Tong Chen
Wentao Zhang
Hongzhi Yin
DD
77
19
0
28 Jan 2025
Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph
Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph
Guancheng Wan
Zewen Liu
Max S. Y. Lau
B. A. Prakash
Wei Jin
67
1
0
28 Sep 2024
Backdoor Graph Condensation
Backdoor Graph Condensation
Jiahao Wu
Ning Lu
Zeiyu Dai
Kun Wang
Wenqi Fan
Shengcai Liu
Qing Li
Ke Tang
AAML
DD
50
5
0
03 Jul 2024
Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition
Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition
Xin Gao
Tong Chen
Wentao Zhang
Junliang Yu
Guanhua Ye
Quoc Viet Hung Nguyen
18
6
0
22 May 2024
A Comprehensive Survey on Graph Reduction: Sparsification, Coarsening,
  and Condensation
A Comprehensive Survey on Graph Reduction: Sparsification, Coarsening, and Condensation
Mohammad Hashemi
Shengbo Gong
Juntong Ni
Wenqi Fan
B. A. Prakash
Wei-dong Jin
DD
59
37
0
29 Jan 2024
Rethinking Graph Neural Networks for Anomaly Detection
Rethinking Graph Neural Networks for Anomaly Detection
Jianheng Tang
Jiajin Li
Zi-Chao Gao
Jia Li
53
193
0
31 May 2022
Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
  Prediction
Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction
Eli Chien
Wei-Cheng Chang
Cho-Jui Hsieh
Hsiang-Fu Yu
Jiong Zhang
O. Milenkovic
Inderjit S Dhillon
128
95
0
29 Oct 2021
Dataset Condensation with Differentiable Siamese Augmentation
Dataset Condensation with Differentiable Siamese Augmentation
Bo-Lu Zhao
Hakan Bilen
DD
183
219
0
16 Feb 2021
Beyond Low-frequency Information in Graph Convolutional Networks
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
84
445
0
04 Jan 2021
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
173
907
0
02 Mar 2020
A Survey on Knowledge Graphs: Representation, Acquisition and
  Applications
A Survey on Knowledge Graphs: Representation, Acquisition and Applications
Shaoxiong Ji
Shirui Pan
Erik Cambria
Pekka Marttinen
Philip S. Yu
164
1,877
0
02 Feb 2020
1