ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.07472
  4. Cited By
Cartesian atomic cluster expansion for machine learning interatomic
  potentials

Cartesian atomic cluster expansion for machine learning interatomic potentials

12 February 2024
Bingqing Cheng
ArXivPDFHTML

Papers citing "Cartesian atomic cluster expansion for machine learning interatomic potentials"

15 / 15 papers shown
Title
Cross-functional transferability in universal machine learning interatomic potentials
Cross-functional transferability in universal machine learning interatomic potentials
Xu Huang
B. Deng
Peichen Zhong
Aaron D. Kaplan
Kristin A. Persson
Gerbrand Ceder
24
0
0
07 Apr 2025
Machine learning interatomic potential can infer electrical response
Machine learning interatomic potential can infer electrical response
Peichen Zhong
Dongjin Kim
Daniel S. King
Bingqing Cheng
18
1
0
07 Apr 2025
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
31
0
0
04 Apr 2025
Optimal Invariant Bases for Atomistic Machine Learning
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
32
0
0
30 Mar 2025
Learning charges and long-range interactions from energies and forces
Learning charges and long-range interactions from energies and forces
Dongjin Kim
Daniel S. King
Peichen Zhong
Bingqing Cheng
79
4
0
19 Dec 2024
The Importance of Being Scalable: Improving the Speed and Accuracy of
  Neural Network Interatomic Potentials Across Chemical Domains
The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains
Eric Qu
Aditi S. Krishnapriyan
LRM
18
10
0
31 Oct 2024
On the design space between molecular mechanics and machine learning
  force fields
On the design space between molecular mechanics and machine learning force fields
Yuanqing Wang
Kenichiro Takaba
Michael S. Chen
Marcus Wieder
Yuzhi Xu
...
Kyunghyun Cho
Joe G. Greener
Peter K. Eastman
Stefano Martiniani
M. Tuckerman
AI4CE
32
4
0
03 Sep 2024
Latent Ewald summation for machine learning of long-range interactions
Latent Ewald summation for machine learning of long-range interactions
Bingqing Cheng
16
7
0
27 Aug 2024
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message
  Passing
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing
Viktor Zaverkin
Francesco Alesiani
Takashi Maruyama
Federico Errica
Henrik Christiansen
Makoto Takamoto
Nicolas Weber
Mathias Niepert
36
5
0
23 May 2024
Response Matching for generating materials and molecules
Response Matching for generating materials and molecules
Bingqing Cheng
DiffM
14
1
0
15 May 2024
Overcoming systematic softening in universal machine learning
  interatomic potentials by fine-tuning
Overcoming systematic softening in universal machine learning interatomic potentials by fine-tuning
Bowen Deng
Yunyeong Choi
Peichen Zhong
Janosh Riebesell
Shashwat Anand
Zhuohan Li
KyuJung Jun
Kristin A. Persson
Gerbrand Ceder
AI4CE
24
16
0
11 May 2024
Interpolation and differentiation of alchemical degrees of freedom in
  machine learning interatomic potentials
Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials
Juno Nam
Rafael Gómez-Bombarelli
AI4CE
27
4
0
16 Apr 2024
Pretraining Strategy for Neural Potentials
Pretraining Strategy for Neural Potentials
Zehua Zhang
Zijie Li
A. Farimani
AI4CE
34
0
0
24 Feb 2024
Tensor-reduced atomic density representations
Tensor-reduced atomic density representations
James P. Darby
D. P. Kovács
Ilyes Batatia
M. A. Caro
G. Hart
Christoph Ortner
Gábor Csányi
26
32
0
02 Oct 2022
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
1