ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.07747
  4. Cited By
Optimal score estimation via empirical Bayes smoothing
v1v2 (latest)

Optimal score estimation via empirical Bayes smoothing

12 February 2024
Andre Wibisono
Yihong Wu
Kaylee Yingxi Yang
ArXiv (abs)PDFHTML

Papers citing "Optimal score estimation via empirical Bayes smoothing"

21 / 21 papers shown
Title
DiffEM: Learning from Corrupted Data with Diffusion Models via Expectation Maximization
DiffEM: Learning from Corrupted Data with Diffusion Models via Expectation Maximization
Danial Hosseintabar
Fan Chen
Giannis Daras
Antonio Torralba
C. Daskalakis
64
1
0
14 Oct 2025
A Black-Box Debiasing Framework for Conditional Sampling
A Black-Box Debiasing Framework for Conditional Sampling
Han Cui
Jingbo Liu
36
0
0
13 Oct 2025
Non-asymptotic convergence bound of conditional diffusion models
Non-asymptotic convergence bound of conditional diffusion models
Mengze Li
DiffM
104
0
0
13 Aug 2025
Algorithm- and Data-Dependent Generalization Bounds for Score-Based Generative Models
Algorithm- and Data-Dependent Generalization Bounds for Score-Based Generative Models
Benjamin Dupuis
Dario Shariatian
Maxime Haddouche
Alain Durmus
Umut Simsekli
169
2
0
04 Jun 2025
A Convergence Theory for Diffusion Language Models: An Information-Theoretic Perspective
A Convergence Theory for Diffusion Language Models: An Information-Theoretic Perspective
Gen Li
Changxiao Cai
DiffM
131
9
0
27 May 2025
Improved Sample Complexity For Diffusion Model Training Without Empirical Risk Minimizer Access
Improved Sample Complexity For Diffusion Model Training Without Empirical Risk Minimizer Access
Mudit Gaur
Prashant Trivedi
Sasidhar Kunapuli
Amrit Singh Bedi
Vaneet Aggarwal
390
0
0
23 May 2025
Localized Diffusion Models
Localized Diffusion Models
Georg Gottwald
Shuigen Liu
Youssef Marzouk
Sebastian Reich
X. Tong
DiffM
348
4
0
07 May 2025
Dimension-Free Convergence of Diffusion Models for Approximate Gaussian Mixtures
Dimension-Free Convergence of Diffusion Models for Approximate Gaussian Mixtures
Gen Li
Changxiao Cai
Yuting Wei
DiffM
235
5
0
07 Apr 2025
On the Interpolation Effect of Score Smoothing in Diffusion Models
On the Interpolation Effect of Score Smoothing in Diffusion Models
Zhengdao Chen
DiffM
370
4
0
26 Feb 2025
Regularization can make diffusion models more efficient
Regularization can make diffusion models more efficient
Mahsa Taheri
Johannes Lederer
361
1
0
13 Feb 2025
Shallow diffusion networks provably learn hidden low-dimensional
  structure
Shallow diffusion networks provably learn hidden low-dimensional structure
Nicholas M. Boffi
Arthur Jacot
Stephen Tu
Ingvar M. Ziemann
DiffM
202
5
0
15 Oct 2024
Linear Convergence of Diffusion Models Under the Manifold Hypothesis
Linear Convergence of Diffusion Models Under the Manifold HypothesisAnnual Conference Computational Learning Theory (COLT), 2024
Peter Potaptchik
Iskander Azangulov
George Deligiannidis
DiffM
255
19
0
11 Oct 2024
Convergence of Noise-Free Sampling Algorithms with Regularized
  Wasserstein Proximals
Convergence of Noise-Free Sampling Algorithms with Regularized Wasserstein Proximals
Fuqun Han
Stanley Osher
Wuchen Li
172
3
0
03 Sep 2024
Differentially Private Kernel Density Estimation
Differentially Private Kernel Density Estimation
Erzhi Liu
Jerry Yao-Chieh Hu
Alex Reneau
Zhao Song
Han Liu
345
3
0
03 Sep 2024
Plug-in estimation of Schrödinger bridges
Plug-in estimation of Schrödinger bridges
Aram-Alexandre Pooladian
Jonathan Niles-Weed
DiffMOT
218
6
0
21 Aug 2024
Evaluating the design space of diffusion-based generative models
Evaluating the design space of diffusion-based generative modelsNeural Information Processing Systems (NeurIPS), 2024
Yuqing Wang
Ye He
Molei Tao
DiffM
275
16
0
18 Jun 2024
Gradient Guidance for Diffusion Models: An Optimization Perspective
Gradient Guidance for Diffusion Models: An Optimization Perspective
Yingqing Guo
Hui Yuan
Yukang Yang
Minshuo Chen
Mengdi Wang
183
44
0
23 Apr 2024
An Overview of Diffusion Models: Applications, Guided Generation,
  Statistical Rates and Optimization
An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization
Minshuo Chen
Song Mei
Jianqing Fan
Mengdi Wang
VLMMedImDiffM
244
81
0
11 Apr 2024
Cryptographic Hardness of Score Estimation
Cryptographic Hardness of Score EstimationNeural Information Processing Systems (NeurIPS), 2024
Min Jae Song
151
1
0
04 Apr 2024
Diffusion Model for Data-Driven Black-Box Optimization
Diffusion Model for Data-Driven Black-Box Optimization
Zihao Li
Hui Yuan
Kaixuan Huang
Chengzhuo Ni
Yinyu Ye
Minshuo Chen
Mengdi Wang
DiffM
175
19
0
20 Mar 2024
Closed-Form Diffusion Models
Closed-Form Diffusion Models
Christopher Scarvelis
Haitz Sáez de Ocáriz Borde
Justin Solomon
DiffM
438
22
0
19 Oct 2023
1