ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.09327
  4. Cited By
Information Complexity of Stochastic Convex Optimization: Applications
  to Generalization and Memorization

Information Complexity of Stochastic Convex Optimization: Applications to Generalization and Memorization

14 February 2024
Idan Attias
Gintare Karolina Dziugaite
Mahdi Haghifam
Roi Livni
Daniel M. Roy
ArXivPDFHTML

Papers citing "Information Complexity of Stochastic Convex Optimization: Applications to Generalization and Memorization"

10 / 10 papers shown
Title
The Pitfalls of Memorization: When Memorization Hurts Generalization
The Pitfalls of Memorization: When Memorization Hurts Generalization
Reza Bayat
Mohammad Pezeshki
Elvis Dohmatob
David Lopez-Paz
Pascal Vincent
OOD
92
3
0
10 Dec 2024
Not Every Image is Worth a Thousand Words: Quantifying Originality in
  Stable Diffusion
Not Every Image is Worth a Thousand Words: Quantifying Originality in Stable Diffusion
Adi Haviv
Shahar Sarfaty
Uri Y. Hacohen
N. Elkin-Koren
Roi Livni
Amit H. Bermano
27
2
0
15 Aug 2024
Are we making progress in unlearning? Findings from the first NeurIPS
  unlearning competition
Are we making progress in unlearning? Findings from the first NeurIPS unlearning competition
Eleni Triantafillou
Peter Kairouz
Fabian Pedregosa
Jamie Hayes
M. Kurmanji
...
Lisheng Sun-Hosoya
Sergio Escalera
Gintare Karolina Dziugaite
Peter Triantafillou
Isabelle M Guyon
MU
44
14
0
13 Jun 2024
The Sample Complexity of Gradient Descent in Stochastic Convex
  Optimization
The Sample Complexity of Gradient Descent in Stochastic Convex Optimization
Roi Livni
MLT
29
0
0
07 Apr 2024
Adversarially Robust Learning: A Generic Minimax Optimal Learner and
  Characterization
Adversarially Robust Learning: A Generic Minimax Optimal Learner and Characterization
Omar Montasser
Steve Hanneke
Nathan Srebro
16
17
0
15 Sep 2022
Information-theoretic generalization bounds for black-box learning
  algorithms
Information-theoretic generalization bounds for black-box learning algorithms
Hrayr Harutyunyan
Maxim Raginsky
Greg Ver Steeg
Aram Galstyan
32
41
0
04 Oct 2021
Extracting Training Data from Large Language Models
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,798
0
14 Dec 2020
When is Memorization of Irrelevant Training Data Necessary for
  High-Accuracy Learning?
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?
Gavin Brown
Mark Bun
Vitaly Feldman
Adam D. Smith
Kunal Talwar
245
80
0
11 Dec 2020
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent
  Estimates
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
Jeffrey Negrea
Mahdi Haghifam
Gintare Karolina Dziugaite
Ashish Khisti
Daniel M. Roy
FedML
105
146
0
06 Nov 2019
Privately Learning High-Dimensional Distributions
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
52
146
0
01 May 2018
1