ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.09477
  4. Cited By
PANORAMIA: Privacy Auditing of Machine Learning Models without
  Retraining

PANORAMIA: Privacy Auditing of Machine Learning Models without Retraining

12 February 2024
Mishaal Kazmi
H. Lautraite
Alireza Akbari
Mauricio Soroco
Qiaoyue Tang
Tao Wang
Sébastien Gambs
Mathias Lécuyer
ArXivPDFHTML

Papers citing "PANORAMIA: Privacy Auditing of Machine Learning Models without Retraining"

9 / 9 papers shown
Title
Empirical Privacy Variance
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
62
0
0
16 Mar 2025
Privacy Auditing of Large Language Models
Ashwinee Panda
Xinyu Tang
Milad Nasr
Christopher A. Choquette-Choo
Prateek Mittal
PILM
62
5
0
09 Mar 2025
Synthetic Data Can Mislead Evaluations: Membership Inference as Machine Text Detection
Synthetic Data Can Mislead Evaluations: Membership Inference as Machine Text Detection
Ali Naseh
Niloofar Mireshghallah
49
0
0
20 Jan 2025
Do Parameters Reveal More than Loss for Membership Inference?
Do Parameters Reveal More than Loss for Membership Inference?
Anshuman Suri
Xiao Zhang
David E. Evans
MIACV
MIALM
AAML
42
1
0
17 Jun 2024
BadGD: A unified data-centric framework to identify gradient descent
  vulnerabilities
BadGD: A unified data-centric framework to identify gradient descent vulnerabilities
ChiHua Wang
Guang Cheng
SILM
32
5
0
24 May 2024
Revealing the True Cost of Locally Differentially Private Protocols: An
  Auditing Perspective
Revealing the True Cost of Locally Differentially Private Protocols: An Auditing Perspective
Héber H. Arcolezi
Sébastien Gambs
17
1
0
04 Sep 2023
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
138
347
0
25 Sep 2021
Extracting Training Data from Large Language Models
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,798
0
14 Dec 2020
Systematic Evaluation of Privacy Risks of Machine Learning Models
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
177
357
0
24 Mar 2020
1