ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.11126
  4. Cited By
Kolmogorov n-Widths for Multitask Physics-Informed Machine Learning
  (PIML) Methods: Towards Robust Metrics

Kolmogorov n-Widths for Multitask Physics-Informed Machine Learning (PIML) Methods: Towards Robust Metrics

16 February 2024
Michael Penwarden
H. Owhadi
Robert M. Kirby
    AI4CE
ArXivPDFHTML

Papers citing "Kolmogorov n-Widths for Multitask Physics-Informed Machine Learning (PIML) Methods: Towards Robust Metrics"

2 / 2 papers shown
Title
Meta-learning PINN loss functions
Meta-learning PINN loss functions
Apostolos F. Psaros
Kenji Kawaguchi
George Karniadakis
PINN
30
96
0
12 Jul 2021
On the eigenvector bias of Fourier feature networks: From regression to
  solving multi-scale PDEs with physics-informed neural networks
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
129
435
0
18 Dec 2020
1