ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.11515
  4. Cited By
Optimal Parallelization Strategies for Active Flow Control in Deep
  Reinforcement Learning-Based Computational Fluid Dynamics

Optimal Parallelization Strategies for Active Flow Control in Deep Reinforcement Learning-Based Computational Fluid Dynamics

18 February 2024
Wang Jia
Hang Xu
    AI4CE
ArXivPDFHTML

Papers citing "Optimal Parallelization Strategies for Active Flow Control in Deep Reinforcement Learning-Based Computational Fluid Dynamics"

4 / 4 papers shown
Title
Deep Reinforcement Learning for Computational Fluid Dynamics on HPC
  Systems
Deep Reinforcement Learning for Computational Fluid Dynamics on HPC Systems
Marius Kurz
Philipp Offenhäuser
Dominic Viola
Oleksandr Shcherbakov
Michael M. Resch
Andrea Beck
AI4CE
20
22
0
13 May 2022
Comparative analysis of machine learning methods for active flow control
Comparative analysis of machine learning methods for active flow control
F. Pino
Lorenzo Schena
Jean Rabault
M. A. Mendez
18
43
0
23 Feb 2022
An Introduction to Deep Reinforcement Learning
An Introduction to Deep Reinforcement Learning
Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joelle Pineau
OffRL
AI4CE
80
1,230
0
30 Nov 2018
Emergence of Locomotion Behaviours in Rich Environments
Emergence of Locomotion Behaviours in Rich Environments
N. Heess
TB Dhruva
S. Sriram
Jay Lemmon
J. Merel
...
Tom Erez
Ziyun Wang
S. M. Ali Eslami
Martin Riedmiller
David Silver
120
928
0
07 Jul 2017
1